Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Biol Trace Elem Res ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38735894

RESUMO

Taurine is a non-proteinogenic amino acid derived from cysteine. It is involved in several phenomena such as the regulation of growth and differentiation, osmoregulation, neurohormonal modulation, and lipid metabolism. Taurine is important because of its high levels in several tissues such as the central nervous system (CNS), heart, skeletal muscles, retinal membranes, and platelets. In this report, we present the functional properties of taurine indicating that it has potential effects on various metal toxicities. Therefore, a comprehensive literature review was performed using the Scopus, PubMed, and Web of Science databases. According to the search keywords, 61 articles were included in the study. The results indicate that taurine protects tissues against metal toxicity through enhancement of enzymatic and non-enzymatic antioxidant capacity, modulation of oxidative stress, anti-inflammatory and anti-apoptotic effects, involvement in different molecular pathways, and interference with the activity of various enzymes. Taken together, taurine is a natural supplement that presents antitoxic effects against many types of compounds, especially metals, suggesting public consumption of this amino acid as a prophylactic agent against the incidence of metal toxicity.

2.
Iran J Basic Med Sci ; 27(5): 552-559, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629092

RESUMO

Objectives: Rhabdomyolysis leads to the release of myoglobin, sarcoplasmic proteins, and electrolytes into the blood circulation causing acute kidney injury (AKI). Thymoquinone, a natural compound found in Nigella sativa seeds, has antioxidant and anti-inflammatory effects. This investigation assessed the renoprotective effect of thymoquinone on rhabdomyolysis-induced AKI in rats. Materials and Methods: Male Wistar rats were categorized into six groups (n = 6): 1. Control: (normal saline), 2. Glycerol (50 ml/kg, single dose, IM), 3-5: Glycerol + thymoquinone (1, 2.5 and 5 mg/kg, 4 days, IP), 6. Thymoquinone (5 mg/kg). On day 5, serum and kidney tissue were isolated and the amounts of serum creatinine and blood urea nitrogen (BUN), renal malondialdehyde (MDA), glutathione (GSH.), tumor necrosis factor-alpha (TNF-α), neutrophil gelatinase-associated lipocalin (NGAL), and pathological changes were evaluated. Results: Glycerol increased creatinine, BUN, MDA, TNF-α, and NGAL levels. It decreased GSH amounts and caused renal tubular necrosis, glomerular atrophy, and myoglobin cast in kidney tissue. Co-administration of glycerol and thymoquinone reduced creatinine, BUN, histopathological alterations, and MDA levels, and enhanced GSH amounts. Administration of glycerol and thymoquinone (5 mg/kg) had no significant effect on TNF-α amount but decreased NGAL protein levels. The administration of thymoquinone (5 mg/kg) alone did not display a significant difference from the control group. Conclusion: Rhabdomyolysis from glycerol injection in rats can cause kidney damage. Thymoquinone may attenuate renal dysfunction and oxidative stress. However, the TNF-α level was not significantly affected. Further studies are needed to explore the potential therapeutic effects of thymoquinone in managing AKI.

3.
Life Sci ; 346: 122638, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614294

RESUMO

AIMS: Resveratrol (RSV) is a polyphenolic substance found in numerous natural products. Despite the wide range of therapeutic activities, including antioxidant and anti-inflammatory effects, the poor pharmacokinetic characteristics decrease the RSV bioavailability following oral administration. Milk-derived exosomes (MEXOs), as a class of natural nanocarriers, are promising candidates for oral drug delivery approaches. MAIN METHODS: The current study developed RSV-loaded MEXOs to enhance the RSV oral bioavailability, introducing a suitable exosomal formulation for suppressing colon inflammation in acetic acid-induced rat models. KEY FINDINGS: The results showed a remarkable encapsulation efficiency of 83.33 %. The in vitro release profile demonstrated a good retaining capability in acidic conditions (pH 1.2) and a considerable release in a simulated duodenal environment (pH 6.8). According to the permeability study, encapsulation of RSV improved its transportation across the Caco-2 monolayer. Moreover, the in vivo and histological analysis results proved that the RSV-MEXOs formulation successfully alleviates the inflammation in colitis rat models and effectively relieves the colitis. SIGNIFICANCE: Our findings suggest that MEXOs should be of great attention as promising oral drug delivery vehicles for further clinical evaluations.


Assuntos
Modelos Animais de Doenças , Exossomos , Doenças Inflamatórias Intestinais , Resveratrol , Animais , Resveratrol/administração & dosagem , Resveratrol/farmacologia , Resveratrol/farmacocinética , Ratos , Administração Oral , Exossomos/metabolismo , Células CACO-2 , Humanos , Masculino , Doenças Inflamatórias Intestinais/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Ratos Sprague-Dawley , Disponibilidade Biológica , Leite , Colite/tratamento farmacológico , Colite/induzido quimicamente , Colite/patologia
4.
Food Sci Nutr ; 12(4): 2311-2333, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38628188

RESUMO

Imagine consuming a daily diet rich in fatty acids to help treat diseases such as hypertension and obesity. This concept presents an attractive paradox. In particular, consuming walnut kernels is beneficial for treating diseases associated with metabolic syndrome (MetS), including type 2 diabetes, cardiovascular disease, dyslipidemia, and obesity. Different parts of the Juglans regia tree (family Juglandaceae), including its leaves, green husks, bark, and septum, have shown promising effects on pathological conditions related to MetS. The therapeutic advantages of consuming walnut kernels for MetS can be attributed to the presence of polyunsaturated fatty acids and polyphenolic compounds such as juglone and ellagic acid. Diets enriched with walnut kernel have a positive impact on MetS complications by reducing diastolic blood pressure, improving blood lipid profiles, lowering fasting blood sugar levels, and increasing insulin sensitivity. The potential cellular mechanisms responsible for these benefits involve activating the cholesterol hemostasis pathway by inhibiting sterol regulatory element-binding proteins (SREBPs), proprotein convertase subtilisin/kexin type 9 (PCSK9), and cholesteryl ester transfer protein (CETP). Furthermore, other by-products of walnuts, such as leaves and green husks, have also demonstrated effectiveness in managing MetS. These findings highlight the potential of incorporating walnut-based products into our diets as a natural approach to combating MetS and its complications.

5.
Iran J Basic Med Sci ; 27(3): 311-318, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333747

RESUMO

Objectives: Acrylamide (ACR) induces neurotoxicity in humans and animals through different mechanisms. Sitagliptin is a type-2 diabetes medication with neuroprotective properties. The effects of sitagliptin against neurotoxicity stimulated by ACR were examined. Materials and Methods: Male Wistar rats were classified as follows: 1. Control (normal saline, 11 days, IP), 2. ACR (50 mg/kg, 11 days, IP), 3. ACR (11 days, days 11-20 normal saline), 4-7. ACR+sitagliptin (5, 10, 20, and 40 mg/kg, 11 days, IP), 8. ACR+sitagliptin (10 mg/kg, days 6-11), 9. ACR+sitagliptin (10 mg/kg, days 6-20), 10. Sitagliptin (40 mg/kg, 11 days), 11. ACR+vitamin E (200 mg/kg, IP). Finally, the gait score was evaluated. Reduced glutathione (GSH) and malondialdehyde (MDA) levels were measured in cortex tissue. Also, IL-1ß, TNF-α, and caspase-3 levels were assessed in the cortex by western blotting. Results: ACR caused movement disorders, triggered oxidative stress, and raised TNF-α, IL-1ß, and caspase-3 cleaved levels. Supplementation of sitagliptin (10 mg/kg) along with ACR, in 3 protocols, reduced gait disorders compared to the ACR group. Receiving sitagliptin in all doses plus ACR and injection of sitagliptin (10 mg/kg) from days 6 to11 reduced the MDA level of cortex tissue. Sitagliptin (all doses) plus ACR increased the GSH level of the cortex tissue. Sitagliptin (10 mg/kg) with ACR dropped the amounts of TNF-α and caspase-3 cleaved proteins in cortex tissue but did not affect the IL-1ß level. Conclusion: Sitagliptin disclosed preventive and therapeutic effects on ACR neurotoxicity. Sitagliptin possesses antioxidant, anti-inflammatory, and anti-apoptotic properties and inhibits CR neurotoxicity in rats.

6.
Phytomedicine ; 126: 155352, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342017

RESUMO

BACKGROUND: One of the most unique plants that have ever grown on the planet is Ginkgo biloba L., a member of the Ginkgoaceae family with no close living relatives. The existence of several differently structured components of G. biloba has increased the chemical variety of herbal therapy. Numerous studies that investigated the biochemical characteristics of G. biloba suggest this plant as a potential treatment for many illnesses. PURPOSE: Review the molecular mechanisms involved in the signaling pathways of G. biloba activity in varied circumstances and its potential as a novel treatment for various illnesses. METHODS: Studies focusing on the molecular processes and signaling pathways of compounds and extracts of G. biloba were found and summarized using the proper keywords and operators from Google Scholar, PubMed, Web of Science, and Scopus without time restrictions. RESULTS: G. biloba exerts its effects through its anti-inflammatory, anti-apoptotic, anti-cancer, neuroprotective, cardioprotective, hepatoprotective, antiviral, antibacterial, pulmoprotective, renoprotective, anti-osteoporosis, anti-melanogenic, retinoprotective, otoprotective, adipogenic, and anti-adipogenic properties. The most important mechanisms involved in these actions are altering the elevation of ROS formation, inhibiting NADPH oxidases activation, altering the expression of antioxidant enzymes, downregulating MAPKs (p38 MAPK and ERK, and JNK) and AP-1, increasing cAMP, inactivating Stat5, activating the AMPK signaling pathway, affecting Stat3/JAK2, NF-κB, Nrf-2, mTOR, HGF/c-Met, Wnt/ß-catenin and BMP signaling pathways, and changing the mitochondrial transmembrane potential, the Bax/Bcl-2 ratio, the release of Cyc from mitochondria to cytosol, the protein cleavage of caspases 3, 7, 8, 9, and 12, poly (ADP-ribose) polymerase, and MMPs levels. CONCLUSIONS: G. biloba and its components have gained attention in recent years for their therapeutic benefits, such as their anti-inflammatory, antioxidant, anti-apoptotic, and apoptotic effects. By understanding their molecular mechanisms and signaling pathways, potential novel medicines might be developed in response to the rising public desire for new therapies.


Assuntos
Antioxidantes , Ginkgo biloba , Ginkgo biloba/química , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Transdução de Sinais , Anti-Inflamatórios/farmacologia
7.
Neurotoxicology ; 100: 47-54, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043637

RESUMO

BACKGROUND: Acrylamide (ACR) can induce neurotoxicity through different pathways, including oxidative stress and apoptosis. Azithromycin is well-known for its antioxidant and anti-apoptotic properties. OBJECTIVE: To evaluate the potential neuroprotective effect of azithromycin in an in vivo model of ACR-induced neurotoxicity, by investigating its impact on oxidative stress and apoptosis pathways. METHODS: Male rats were divided into eleven groups at random (n = 6). 1:control (vehicle), 2:ACR (50 mg/kg, 11 days, I.P.), 3-7:ACR+ azithromycin (3.1, 6.25, 12.5, 25, 50 mg/kg, 11 days, I.P.), 8-9:ACR+ azithromycin (3.1, 6.25 mg/kg, from day 3-11), 10: ACR+ vitamin E (200 mg/kg, every other day, I.P.), 11. Azithromycin (50 mg/kg). Following the treatment period, a gait score examination was performed, and malondialdehyde (MDA), glutathione (GSH), Bcl-2-associated X protein (Bax)/B-cell lymphoma 2 (Bcl-2) ratio and caspase-3 levels in the cerebral cortex were measured. RESULTS: Gait abnormality, a drop in GSH, and an increase in lipid peroxidation, Bax/Bcl-2 ratio, and caspase-3 levels were all significantly triggered by ACR in the cerebral cortex versus the control group. Azithromycin 3.1 and 6.25 mg/kg with ACR and azithromycin 6.25 mg/kg with ACR from day 3-11 ameliorated movement disorders caused by ACR. Azithromycin in all doses and both protocols along with ACR decreased the MDA level. Azithromycin (3.1, 6.25 mg/kg) along with ACR in both protocols increased the level of GSH, reduced the Bax/Bcl-2 ratio and caspase-3 amounts in the brain tissue versus the ACR group. CONCLUSIONS: Administration of azithromycin had both preventive and therapeutic effects on ACR-induced neurotoxicity through its antioxidant and antiapoptotic properties.


Assuntos
Antioxidantes , Azitromicina , Ratos , Masculino , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Caspase 3/metabolismo , Azitromicina/uso terapêutico , Azitromicina/farmacologia , Proteína X Associada a bcl-2/metabolismo , Acrilamida/toxicidade , Estresse Oxidativo , Glutationa/metabolismo , Apoptose
8.
Phytother Res ; 38(1): 98-116, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37813398

RESUMO

Cigarette smoking (CS) is a crucial modifiable risk of developing several human diseases and cancers. It causes lung, bladder, breast, and esophageal cancers, respiratory disorders, as well as cardiovascular and metabolic diseases. Because of these adverse health effects, continual efforts to decrease the prevalence and toxicity of CS are imperative. Until the past decades, the impacts of natural compounds have been under investigation on the harmful effects of CS. Turmeric (Curcuma longa), a rhizomatous herbaceous perennial plant that belongs to the Zingiberaceae family, is the main source of curcumin. This review is an attempt to find out the current knowledge on CS's harmful effects and protective potential of curcumin in the pulmonary, liver, brain, gastrointestinal, and testis organs. According to the present review, simultaneous consumption of curcumin and CS can attenuate CS toxicities including chronic obstructive pulmonary disease, gastrointestinal toxicity, metabolic diseases, testis injury, and neurotoxicity. Moreover, curcumin suppresses carcinogenesis in the skin, liver, lungs, breast, colon, and stomach. Curcumin mediates these protective effects through antioxidant, anti-inflammatory, anti-apoptotic, and anti-carcinogenicity properties.


Assuntos
Fumar Cigarros , Curcumina , Doenças Metabólicas , Masculino , Humanos , Curcumina/farmacologia , Pulmão , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Curcuma
9.
Heliyon ; 9(11): e21844, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027887

RESUMO

Objective: (s): Metabolic syndrome is a collection of metabolic abnormalities that includes hyperglycemia, dyslipidemia, hypertension, and obesity. Ellagic acid is found in various fruits and vegetables. It has been reported to have several pharmacological properties, such as antibacterial, antifungal, antiviral, anti-inflammatory, hepatoprotective, cardioprotective, chemopreventive, neuroprotective, gastroprotective, and antidiabetic. Our current study aims to shed light on the probable efficiency of ellagic acid in managing metabolic syndrome and its complications. Materials and methods: To prepare the present review, the databases or search engines utilized included Scopus, PubMed, Science Direct, and Google Scholar, and relevant articles have been gathered with no time limit until March 2023. Results: Several investigations indicated that ellagic acid could be a potent compound for the treatment of many disorders such as diabetes, hypertension, and hyperlipidemia by various mechanisms, including increasing insulin secretion, insulin receptor substrate protein 1 expression, regulating glucose transporter 4, triglyceride, total cholesterol, low-density lipoprotein (LDL), high-density lipoprotein (HDL), attenuating tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), reactive oxygen species (ROS), malondialdehyde (MDA), and oxidative stress in related tissues. Furthermore, ellagic acid ameliorates mitochondrial function, upregulates uncoupling protein 1 (found in brown and white adipose tissues), and regulates blood levels of nitrate/nitrite and vascular relaxations in response to acetylcholine and sodium nitroprusside. Conclusion: Ellagic acid can treat or manage metabolic syndrome and associated complications, according to earlier studies. To validate the beneficial effects of ellagic acid on metabolic syndrome, additional preclinical and clinical research is necessary.

10.
Iran J Basic Med Sci ; 26(10): 1131-1143, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37736506

RESUMO

Safranal (a monoterpene aldehyde) is the major volatile component of saffron which is responsible for the saffron unique odor. Several studies have shown the pharmacological activities of safranal including anti-oxidant, anti-inflammatory, cardioprotective, neuroprotective, nephroprotective, gastrointestinal protective, etc. This study was designed to review the pharmacological and medical effects of safranal and up-to-date previous knowledge. Moreover, some patents related to the pharmacological effects of safranal were gathered. Therefore, electronic databases including Web of Sciences, Scopus, and Pubmed for pharmacological effects and US patent, Patentscope, and Google Patent for patents were comprehensively searched by related English keywords from 2010 to June 2022. According to our review, most of the studies are related to the safranal effects on CNS such as antianxiety, analgesic, anticonvulsant, antiischemic, anti-tremor, memory enhancement and its protective effects on neurodegenerative disorders such as Alzheimer's, Parkinson and Huntington diseases. Other effects of safranal are antiasthmatic, antihypertensive, antiaging, anticataract, etc. Moreover, the protective effects of this agent on metabolic syndrome and diabetic nephropathy have been shown. Different mechanisms including anti-oxidant, anti-inflammatory, muscle relaxation, antiapoptotic, and regulatory effects on the genes and proteins expression related to signaling pathways of oxidative stress, inflammation, apoptosis, proliferation, etc. are involved in safranal pharmacological effects. Some patents for the prevention and/or treatment of different diseases such as liver cancer, sleep disorder, depression, cognitive disorder, obesity and PMS were also included. Based on the documents, safranal is considered a promising therapeutic agent although more clinical studies are needed to verify the beneficial effects of safranal in humans.

11.
Environ Sci Pollut Res Int ; 30(42): 95789-95800, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37556057

RESUMO

Acrylamide (ACR) is known to be a neurotoxic agent for humans and animals that has many applications in industry. Alpha-mangostin is a natural antioxidant that is extracted from mangosteen. This study aimed to investigate the protective effects of alpha-mangostin against ACR-induced neurotoxicity in rats and PC12 cells. Male Wistar rats were used in this investigation for 11 days, divided into 8 groups: 1. control group (normal saline), 2. ACR (50 mg/kg, i.p.), 3-6. ACR + alpha-mangostin (20, 40, 60 mg/kg, p.o.), 7. ACR + vitamin E (200 mg/kg, i.p., every other day) 8. alpha-mangostin (60 mg/kg, p.o.). On the last day of the study, the behavioral test was performed. The amounts of malondialdehyde (MDA) and glutathione (GSH) were measured. Also, the effects of ACR and alpha-mangostin were assessed by MTT assay on PC12 cells, and the levels of reactive oxygen species (ROS), B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), and cleaved caspase-3 proteins were measured by Western blotting. Receiving ACR caused motor disorders in animals, increased MDA, and decreased GSH levels of the cerebral cortex versus the control group. Alpha-mangostin (60 mg/kg) reduced ACR motility disorders, MDA amounts, and augmented GSH levels. The concurrent administration of vitamin E and ACR reduced gait score, MDA level, and amplified GSH content versus the ACR group. In the in vitro section, alpha-mangostin (1.25 µM, 24 h) increased cell viability, attenuated ROS, Bax/Bcl-2, and cleaved caspase-3 levels versus the ACR group. Alpha-mangostin reduced the toxicity of ACR by inhibiting oxidative stress and apoptosis. Therefore, it could be a promising compound for managing ACR-induced neurotoxicity.


Assuntos
Acrilamida , Síndromes Neurotóxicas , Humanos , Ratos , Masculino , Animais , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Caspase 3/metabolismo , Proteína X Associada a bcl-2/metabolismo , Acrilamida/toxicidade , Estresse Oxidativo , Glutationa/metabolismo , Apoptose , Vitamina E/farmacologia
12.
Life Sci ; 330: 121992, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37524160

RESUMO

AIMS: Crocin has immunomodulatory and anticancer effects. In this study, crocin was used to induce the M1 phenotype in mouse tumor macrophages. MAIN METHODS: A targeted liposomal formulation with m2 peptide was prepared and characterized to deliver crocin to the M2 macrophages present in the tumor environment. RT-qPCR and IHC were performed for in vitro and in vivo (in C26 colon carcinoma mouse model at a dose of 50 mg/kg) assessment of M1 induction, respectively. KEY FINDINGS: In vitro results indicated that liposome modified with m2 peptide was non-toxic to macrophages and had an improved uptake by macrophages compared to the non-targeted formulation and induced M1 phenotype through an IL6-independent pathway. M2 peptide- modified liposome showed considerable tumor accumulation and anti-tumor effects and significantly shifted the phenotype of tumor macrophages towards an anti-tumor M1 phenotype. SIGNIFICANCE: Probably the remarkable anti-tumor responses observed in this study with m2 peptide-targeted liposomal formulations containing crocin were due to the enhanced delivery of crocin to the tumor macrophage and the subsequent initiation of anti-tumor immune responses.


Assuntos
Neoplasias do Colo , Lipossomos , Camundongos , Animais , Lipossomos/farmacologia , Macrófagos/patologia , Fenótipo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Peptídeos/farmacologia
13.
Iran J Basic Med Sci ; 26(6): 662-668, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275759

RESUMO

Objectives: Acrylamide (ACR) is a toxic chemical agent that can induce hepatotoxicity through different mechanisms including oxidative stress and apoptosis. Amifostine is an important hepatoprotective and anti-oxidant compound. In this research, the hepatoprotective effect of amifostine on ACR-induced hepatotoxicity in rats has been investigated. Materials and Methods: Male Wistar rats were randomly divided into 7 groups, including: 1. Control group, 2. ACR (50 mg/kg, 11 days, IP), 3-5. ACR+ amifostine (25, 50, 100 mg/kg, 11 days, IP), 6. ACR+ N-acetyl cysteine (NAC) (200 mg/kg, 11 days, IP), and 7. Amifostine (100 mg/kg, 11 days, IP). At the end of the injection period, animals' liver samples were collected to determine the content of glutathione (GSH), malondialdehyde (MDA), and apoptotic proteins (B-cell lymphoma 2 (Bcl2), Bcl-2-associated X protein (Bax), and cleaved caspase-3. Serum samples were also collected to measure alanine transaminase (ALT) and aspartate transaminase (AST) levels. Results: Administration of ACR increased MDA, Bax/Bcl2 ratio, cleaved caspase-3, ALT, and AST levels, and decreased GSH content compared with the control group. The administration of amifostine with ACR decreased MDA, Bax/Bcl2 ratio, cleaved caspase-3, ALT, and AST levels, and increased GSH content compared with the ACR group. Receiving NAC along with ACR reversed the alterations induced by ACR. Conclusion: This study shows that pretreatment with amifostine can reduce ACR-induced toxicity in the liver tissue of rats. Since oxidative stress is one of the most important mechanisms in ACR toxicity, amifostine probably reduces the toxicity of ACR by increasing the anti-oxidant and anti-apoptotic capacity of the hepatic cells.

14.
Naunyn Schmiedebergs Arch Pharmacol ; 396(11): 3233-3242, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37247013

RESUMO

Acute respiratory distress syndrome (ARDS) is a serious intensive care condition. Despite advances in treatment over the previous few decades, ARDS patients still have high fatality rates. Thus, more research is needed to improve the outcomes for people with ARDS. Minocycline is an antibiotic with antioxidant, anti-inflammatory, and anti-apoptotic effects. In the current investigation, the therapeutic effects of minocycline on oleic acid-induced ARDS were evaluated. Male rats were classified into 6 groups, 1. control (normal saline), 2. oleic acid (100 µL, i.v.), 3-5. oleic acid + minocycline (50, 100, 200 mg/kg, i.p.), and 6. minocycline (200 mg/kg, i.p.) alone. Twenty-four hours after the oleic acid injection, the lung tissue is isolated, weighed, and the middle part of the right lung is immediately placed in the freezer, while the middle part of the left lung is placed in formalin and sent to the laboratory for pathology testing. Then, the amounts of malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), cytokines (interleukin-1 beta (IL-1ß), tumor necrosis factor-α (TNF-α)), B-cell lymphoma 2 (Bcl-2), Bcl-2 associated X (Bax), and cleaved caspase-3 were determined in lung tissue. Administration of oleic acid increased emphysema, inflammation, vascular congestion, hemorrhage, MDA amount, Bax/Bcl-2 ratio, cleaved caspase-3, IL-1ß, TNF-α levels, and decreased GSH, SOD, and CAT levels in comparison with the control group. The administration of minocycline could significantly reduce pathological and biochemical alterations induced by oleic acid. Minocycline has a therapeutic effect on oleic acid-induced ARDS through antioxidant, anti-inflammatory, and anti-apoptotic properties.


Assuntos
Minociclina , Síndrome do Desconforto Respiratório , Humanos , Ratos , Masculino , Animais , Minociclina/farmacologia , Minociclina/uso terapêutico , Ácido Oleico/toxicidade , Caspase 3 , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Fator de Necrose Tumoral alfa , Proteína X Associada a bcl-2 , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Superóxido Dismutase
15.
Mol Biol Rep ; 50(6): 5439-5454, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37155017

RESUMO

BACKGROUND: Nigella sativa and its main bioactive ingredient, thymoquinone, exhibit various pharmacological activities, including neuroprotective, nephroprotective, cardioprotective, gastroprotective, hepatoprotective, and anti-cancer effects. Many studies have been conducted trying to elucidate the molecular signaling pathways that mediate these diverse pharmacological properties of N. sativa and thymoquinone. Accordingly, the goal of this review is to show the effects of N. sativa and thymoquinone on different cell signaling pathways. METHODS: The online databases Scopus, PubMed and Web of Science were searched to identify relevant articles using a list of related keywords such as Nigella sativa, black cumin, thymoquinone, black seed, signal transduction, cell signaling, antioxidant, Nrf2, NF-κB, PI3K/AKT, apoptosis, JAK/STAT, AMPK, MAPK, etc. Only articles published in the English language until May 2022 were included in the present review article. RESULTS: Studies indicate that N. sativa and thymoquinone improve antioxidant enzyme activities, effectively scavenges free radicals, and thus protect cells from oxidative stress. They can also regulate responses to oxidative stress and inflammation via Nrf2 and NF-κB pathways. N. sativa and thymoquinone can inhibit cancer cell proliferation through disruption of the PI3K/AKT pathway by upregulating phosphatase and tensin homolog. Thymoquinone can modulate reactive oxygen species levels in tumor cells, arrest the cell cycle in the G2/M phase as well as affect molecular targets including p53, STAT3 and trigger the mitochondrial apoptosis pathway. Thymoquinone, by adjusting AMPK, can regulate cellular metabolism and energy hemostasis. Finally, N. sativa and thymoquinone can elevate brain GABA content, and thus it may ameliorate epilepsy. CONCLUSIONS: Taken together, the improvement of antioxidant status and prevention of inflammatory process by modulating the Nrf2 and NF-κB signaling and inhibition of cancer cell proliferation through disruption of the PI3K/AKT pathway appear to be the main mechanisms involved in different pharmacological properties of N. sativa and thymoquinone.


Assuntos
Neoplasias , Nigella sativa , Humanos , Extratos Vegetais/farmacologia , NF-kappa B , Antioxidantes/farmacologia , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinases , Proteínas Quinases Ativadas por AMP , Fator 2 Relacionado a NF-E2 , Transdução de Sinais , Benzoquinonas/farmacologia , Benzoquinonas/uso terapêutico , Neoplasias/tratamento farmacológico
16.
Iran J Basic Med Sci ; 26(5): 492-503, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051107

RESUMO

Chemical and natural toxic compounds can harm human health through a variety of mechanisms. Nowadays, herbal therapy is widely accepted as a safe method of treating toxicity. Garcinia mangostana (mangosteen) is a tree in the Clusiaceae family, and isoprenylated xanthones, its main constituents, are a class of secondary metabolites having a variety of biological properties, such as anti-inflammatory, anti-oxidant, pro-apoptotic, anti-proliferative, antinociceptive, neuroprotective, hypoglycemic, and anti-obesity. In this review, the protective activities of mangosteen and its major components against natural and chemical toxicities in both in vivo and in vitro experiments were evaluated. The protective effects of mangosteen and its components are mediated primarily through oxidative stress inhibition, a decrease in the number of inflammatory cells such as lymphocytes, neutrophils, and eosinophils, reduction of inflammatory mediators such as tumor necrosis factor-alpha (TNF-α), interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-8 (IL-8), cyclooxygenase-2 (COX-2), prostaglandin (PG) E2, inducible nitric oxide synthase, and nuclear factor-ĸB (NF-ĸB), modulation of apoptosis and mitogen-activated protein kinase (MAPK) signaling pathways, reducing p65 entrance into the nucleus, α-smooth muscle actin (α-SMA), transforming growth factor ß1 (TGFß1), improving histological conditions, and inhibition in acetylcholinesterase activity.

17.
Naunyn Schmiedebergs Arch Pharmacol ; 396(9): 1879-1909, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37067583

RESUMO

The primary by-product of saffron (Crocus sativus) processing is saffron petals, which are produced in large quantities but are discarded. The saffron petals contain a variety of substances, including alkaloids, anthocyanins, flavonoids, glycosides, kaempferol, and minerals. Pharmacological investigations revealed the antibacterial, antidepressant, antidiabetic, antihypertensive, antinociceptive, antispasmodic, antitussive, hepatoprotective, immunomodulatory, and renoprotective properties of saffron petals, which are based on their antioxidant, anti-inflammatory, and antiapoptotic effects. The nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway protects against oxidative stress, carcinogenesis, and inflammation. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB) is a protein complex involved in approximately all animal cells and participates in different biological procedures such as apoptosis, cell growth, development, deoxyribonucleic acid (DNA) transcription, immune response, and inflammation. The pharmacological properties of saffron and its compounds are discussed in this review, along with their associated modes of action, particularly the Nrf2 and NF-ĸB signaling pathways. Without considering a time constraint, our team conducted this review using search engines or electronic databases like PubMed, Scopus, and Web of Science. Saffron petals and their main constituents may have protective effects in numerous organs such as the brain, colon, heart, joints, liver, lung, and pancreas through several mechanisms, including the Nrf2/heme oxygenase-1 (HO-1)/Kelch-like ECH-associated protein 1 (Keap1) signaling cascade, which would then result in its antioxidant, anti-inflammatory, antiapoptotic, and therapeutic effects.


Assuntos
Crocus , Crocus/química , Flores/química , Transdução de Sinais/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Humanos , Animais , Ensaios Clínicos como Assunto
18.
Naunyn Schmiedebergs Arch Pharmacol ; 396(10): 2241-2259, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37103518

RESUMO

Tumor necrosis factor-α (TNF-α), an inflammatory cytokine, is produced by monocytes and macrophages. It is known as a 'double-edged sword' because it is responsible for advantageous and disadvantageous events in the body system. The unfavorable incident includes inflammation, which induces some diseases such as rheumatoid arthritis, obesity, cancer, and diabetes. Many medicinal plants have been found to prevent inflammation, such as saffron (Crocus sativus L.) and black seed (Nigella sativa). Therefore, the purpose of this review was to assess the pharmacological effects of saffron and black seed on TNF-α and diseases related to its imbalance. Different databases without time limitations were investigated up to 2022, including PubMed, Scopus, Medline, and Web of Science. All the original articles (in vitro, in vivo, and clinical studies) were collected on the effects of black seed and saffron on TNF-α. Black seed and saffron have therapeutic effects against many disorders, such as hepatotoxicity, cancer, ischemia, and non-alcoholic fatty liver, by decreasing TNF-α levels based on their anti-inflammatory, anticancer, and antioxidant properties. Saffron and black seed can treat a variety of diseases by suppressing TNF-α and exhibiting a variety of activities such as neuroprotective, gastroprotective, immunomodulatory, antimicrobial, analgesic, antitussive, bronchodilator, antidiabetic activity, anticancer, and antioxidant effects. To uncover the beneficial underlying mechanisms of black seed and saffron, more clinical trials and phytochemical research are required. Also, these two plants affect other inflammatory cytokines, hormones, and enzymes, implying that they could be used to treat a variety of diseases.


Assuntos
Crocus , Nigella sativa , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Crocus/química , Crocus/metabolismo , Extratos Vegetais/química , Citocinas/análise , Nigella sativa/química , Nigella sativa/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Estresse Oxidativo , Inflamação/tratamento farmacológico , Sementes
19.
Food Chem Toxicol ; 175: 113691, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36871878

RESUMO

Arsenic is a notorious metalloid that exists in the earth's crust and is considered toxic for humans and the environment. Both cancerous and non-cancerous complications are possible after arsenic exposure. Target organs include the liver, lungs, kidney, heart, and brain. Arsenic-induced neurotoxicity, the main focus of our study, can occur in central and peripheral nervous systems. Symptoms can develop in a few hours, weeks, or years depending on the quantity of arsenic and the duration of exposure. In this review, we aimed to gather all the compounds, natural and chemical, that have been studied as protective agents in cellular, animal, and human reports. Oxidative stress, apoptosis, and inflammation are frequently described as destructive mechanisms in heavy metal toxicity. Moreover, reduced activity of acetylcholinesterase, the altered release of monoamine neurotransmitters, down-regulation of N-methyl-D-aspartate receptors, and decreased brain-derived neurotrophic factor are important underlying mechanisms of arsenic-induced neurotoxicity. As for neuroprotection, though some compounds have yet limited data, there are others, such as curcumin, resveratrol, taurine, or melatonin which have been studied more deeply and might be closer to a reliable protective agent. We collected the available information on all protective agents and the mechanisms by which they fight against arsenic-induced neurotoxicity.


Assuntos
Arsênio , Melatonina , Síndromes Neurotóxicas , Animais , Humanos , Arsênio/toxicidade , Acetilcolinesterase , Estresse Oxidativo , Melatonina/farmacologia , Encéfalo , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/prevenção & controle
20.
Iran J Basic Med Sci ; 26(3): 255-268, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36865035

RESUMO

Zhumeria majdae Rech. F. & Wendelbo. traditionally has been used in several remedies, as a carminative agent especially for children, as an antiseptic agent, and it is used in treating diarrhea, stomach irritations, headaches, colds, convulsions, spasms, dysmenorrhea, and healing wounds. According to clinical studies, it is highly effective for reducing inflammation and pain, treating bacterial and fungal infections, morphine tolerance, morphine dependence, withdrawal syndrome symptoms, convulsions, and diabetes. The goal of this review is to find therapeutic opportunities by analyzing the traditional uses and pharmacological effects of the chemical constituents of Z. majdae. The information on Z. majdae in this review was gathered from scientific databases or search engines (PubMed, Wiley Online Library, Scopus, SID, Google Scholar, and Microsoft Academic). The literature cited in this review dates from 1992 to 2021. Several bioactive components including linalool, camphor, manool, and bioactive diterpenoids are presen in different parts of Z. majdae. Various properties were observed such as antioxidant, antinociceptive, anti-inflammatory, antimicrobial, antiviral, larvicidal, anticonvulsant, antidiabetic, and anticancer properties. Also, the effect of Z. majdae on morphine tolerance, morphine dependence, and withdrawal syndrome as well as its toxicology has been established. Although there are in vitro and animal studies on several pharmacological effects of Z. majdae, the lack of clinical studies is significant. Therefore, further clinical trials should be performed to confirm the in vitro and animal findings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA